M464 - Introduction To Probability II - Homework 12
 Enrique Areyan
 April 17, 2014

Chapter 6

Problems

3.1 Let $\xi_{n}, n=0,1, \ldots$, be a two state Markov chain with transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\\
0 \\
1
\end{gathered}\left\|\begin{array}{cc}
0 & 1 \\
0 & 1 \\
1-\alpha & \alpha
\end{array}\right\|
$$

Let $\{N(t) ; t \geq 0\}$ be a Poisson process with parameter λ. Show that

$$
X(t)=\xi_{N(t)}, \quad t \geq 0
$$

is a two state birth and death process and determine the parameters λ_{0} and μ_{1} in terms of α and λ.
Solution: That $X(t)$ is a Markov chain follows from the fact that $N($.$) is a Pois. process independent of \xi_{n}$. Now:

$$
\begin{aligned}
& \operatorname{Pr}\{X(t+h)=1 \mid X(t)=0\}=\operatorname{Pr}\{X(h)=1 \mid X(0)=0\} \\
& =\operatorname{Pr}\left\{\xi_{N(h)}=1 \mid \xi_{N(0)}=0\right\} \quad \text { by def. of } X(t) \\
& =P_{01}^{N(h)} \quad \text { by def. of transition prob. } \\
& =\sum_{i=1}^{\infty} P_{01}^{i} \operatorname{Pr}\{N(h)=i\} \quad \text { law of total prob. } \\
& =\sum_{i=1}^{\infty} P_{01}^{i} e^{-\lambda h} \frac{(\lambda h)^{i}}{i!} \quad \text { Poisson process } \\
& =\sum_{i=1}^{\infty} P_{01}^{i}\left[\sum_{k=0}^{\infty} \frac{(-\lambda h)^{k}}{k!}\right] \frac{(\lambda h)^{i}}{i!} \quad \text { Taylor expansion of } e \\
& =\sum_{i=1}^{\infty} P_{01}^{i}\left(1+(-\lambda h)+\left[\sum_{k=2}^{\infty} \frac{(-\lambda h)^{k}}{k!}\right]\right) \frac{(\lambda h)^{i}}{i!} \quad \text { Taking first two terms out of sum } \\
& =\sum_{i=1}^{\infty} P_{01}^{i}(1-\lambda h+o(h)) \frac{(\lambda h)^{i}}{i!} \quad \text { Since } \sum_{k=2}^{\infty} \frac{(-\lambda h)^{k}}{k!} \text { is } o(h) \\
& =(1-\lambda h+o(h)) \sum_{i=1}^{\infty} P_{01}^{i} \frac{(\lambda h)^{i}}{i!} \quad \text { Since }(1-\lambda h+o(h)) \text { is constant w.r.t } i \\
& =(1-\lambda h+o(h))\left(P_{01}(\lambda h)+\sum_{i=2}^{\infty} P_{01}^{i} \frac{(\lambda h)^{i}}{i!}\right) \quad \text { Taking first term out of sum } \\
& =(1-\lambda h+o(h))\left(P_{01}(\lambda h)+o(h)\right) \quad \text { Since } \sum_{i=2}^{\infty} P_{01}^{i} \frac{(\lambda h)^{i}}{i!} \text { is } o(h) \\
& =(1-\lambda h+o(h))(1(\lambda h)+o(h)) \quad \text { Since } P_{01}=1 \\
& =\lambda h+o(h)-(\lambda h)^{2}-o(h) \lambda h+o(h) \lambda h+o(h) o(h) \quad \text { Distributing } \\
& =\lambda h+o(h) \quad \text { Grouping all } o(h)
\end{aligned}
$$

Hence, $\operatorname{Pr}\{X(t+h)=1 \mid X(t)=0\}=\lambda h+o(h)$ which means that $\lambda_{0}=\lambda$, by dividing by h and letting $h \rightarrow 0$.

$$
\begin{array}{rlrl}
\operatorname{Pr}\{X(t+h)=1 \mid X(t)=0\} & =\operatorname{Pr}\{X(h)=0 \mid X(0)=1\} & \\
& =\operatorname{Pr}\left\{\xi_{N(h)}=0 \mid \xi_{N(0)}=1\right\} & & \text { by def. of } X(t) \\
& =P_{10}^{N(h)} & & \text { by def. of transition prob. } \\
& =\sum_{i=1}^{\infty} P_{10}^{i} P r\{N(h)=i\} & & \text { law of total prob. } \\
& =\sum_{i=1}^{\infty} P_{10}^{i} e^{-\lambda h} \frac{(\lambda h)^{i}}{i!} & & \text { Poisson process } \\
& =\sum_{i=1}^{\infty} P_{10}^{i}\left[\sum_{k=0}^{\infty} \frac{(-\lambda h)^{k}}{k!}\right] \frac{(\lambda h)^{i}}{i!} & & \text { Taylor expansion of } e \\
& =\sum_{i=1}^{\infty} P_{10}^{i}\left(1+(-\lambda h)+\left[\sum_{k=2}^{\infty} \frac{(-\lambda h)^{k}}{k!}\right]\right) \frac{(\lambda h)^{i}}{i!} & & \text { Taking first two terms out of sum } \\
& =\sum_{i=1}^{\infty} P_{10}^{i}(1-\lambda h+o(h)) \frac{(\lambda h)^{i}}{i!} & & \text { Since } \sum_{k=2}^{\infty} \frac{(-\lambda h)^{k}}{k!} \text { is } o(h) \\
& =(1-\lambda h+o(h)) \sum_{i=1}^{\infty} P_{10}^{i} \frac{(\lambda h)^{i}}{i!} & & \text { Since }(1-\lambda h+o(h)) \text { is constant } v \\
& =(1-\lambda h+o(h))\left(P_{10}(\lambda h)+\sum_{i=2}^{\infty} P_{10}^{i} \frac{(\lambda h)^{i}}{i!}\right) & & \text { Taking first term out of sum } \\
& =(1-\alpha) \lambda h+o(h) & & \text { Since } \sum_{i=2}^{\infty} P_{10}^{i} \frac{(\lambda h)^{i}}{i!} \text { is } o(h) \\
& =(1-\lambda h+o(h))\left(P_{10}(\lambda h)+o(h)\right) & \text { Grouping all } o(h)
\end{array}
$$

Hence, $\operatorname{Pr}\{X(t+h)=0 \mid X(t)=1\}=(1-\alpha) \lambda h+o(h)$ which means that $\mu_{1}=(1-\alpha) \lambda$.
3.4 A Stop-and-Go Traveler The velocity $V(t)$ of a stop-and-go traveler is described by the two state Markov chain whose transition probabilities are given by (3.12a-d). The distance traveled in time t is the integral of the velocity:

$$
S(t)=\int_{0}^{t} V(u) d u
$$

Assuming that the velocity at time $t=0$ is $V(0)=0$, determine the mean of $S(t)$. Take for granted the interchange of integral and expectation in

$$
E[S(t)]=\int_{0}^{t} E[V(u)] d u
$$

Solution: First, let us compute the expectation of $V(t)$. Note that the random variable $V(t)=0$ or 1 , since the velocity is described by the aforementioned two-state Markov chain with states 0 and 1 . Moreover, we know that the $V(0)=0$, so the chain starts in state 0 . Hence:

$$
E[V(t)]=0 \cdot \operatorname{Pr}\{V(t)=0\}+1 \cdot \operatorname{Pr}\{V(t)=1\}=\operatorname{Pr}\{V(t)=1\}=P_{01}(t)=\pi-\pi e^{-\tau t}
$$

where $\pi=\alpha /(\alpha+\beta)$ and $\tau=\alpha+\beta$. Now we can compute the mean of $S(t)$:

$$
E[S(t)]=\int_{0}^{t} E[V(u)] d u=\int_{0}^{t} \pi-\pi e^{-\tau u} d u=\left[\pi u+\frac{\pi}{\tau} e^{-\tau u}\right]_{0}^{t}=\left(\pi t+\frac{\pi}{\tau} e^{-\tau t}\right)-\left(\pi 0+\frac{\pi}{\tau} e^{-\tau 0}\right)=\pi t+\frac{\pi}{\tau}\left(e^{-\tau t}-1\right)
$$

This functions makes intuitive sense, as t goes to infinity the mean distance traveled will also go to infinity, i.e., the total distance traveled will increase with no bound. Also, as t goes to zero the mean distance traveled will also go to zero, i.e., no distance traveled at the beginning.

